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Structures in fluids induced by interfaces
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Fachbereich Physik, Bergische Universität Wuppertal, D-42097 Wuppertal, Germany

Received 25 June 1996

Abstract. There are five mechanisms which can lead to mesoscopic interfacial structures:
large interfacial fluctuations, the appearance of new length scales, the divergence of the bulk
correlation length, long-range forces and the presence of massless Goldstone modes. The
importance of the first four mechanisms for roughening, wetting, critical adsorption, and the
orientational order in dipolar fluids, respectively, is discussed.

1. Introduction

If two phases of condensed matter are brought into spatial contact, an interfacial structure
emerges which interpolates smoothly between the bulk properties of the two adjacent phases.
In thermal equilibrium the thickness of such an interface is typically of the order of the
bulk correlation lengths of the two bulk materials. This implies that over a wide range of
pressure and temperature the length scale for the spatial variation of interfacial structures
normal to their mean position is set by the sizes of the particles forming the two phases.
For simple fluids these are a feẘangstroms whereas in complex fluids such as colloidal
suspensions or solutions of macromolecules they can reach several thousandångstroms.

In spite of the low dimensionality of these interfacial sheets and their negligible
contribution towards the global overall properties of the physical systems their presence is
essential for a wealth of important processes in physics, chemistry, and biology. Therefore
it is particularly interesting that either by tuning external thermodynamic variables such
as temperature and chemical potentials or by tailoring the interaction potentials between
the particles one can drastically increase the thicknesses of interfacial structures. Among
the driving mechanisms for such a broadening are pronounced lateral fluctuations of the
local interface positions, the appearance of length scales beyond the correlation lengths,
the divergence of the bulk correlation lengths close to critical points, gapless excitations of
Goldstone modes, and particularly long-range interaction potentials. In fluid systems these
mechanisms are associated with capillary waves, wetting, critical adsorption, superfluidity,
and dipolar interactions, respectively. The study of these phenomena is particularly
stimulating because they play an important role in both technological applications and
basic research where one can analyse the impact of broken translational invariance and the
variation of structural properties between two and three spatial dimensions.

2. Capillary waves and roughening

If two phases are brought into contact under the condition of full thermodynamic equilibrium
and connected to large reservoirs, there is no cost in free energy to shift rigidly the interface
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position between the two phases so that the volume of one phase grows at the expense
of the other. In practice this instability is offset by the discreteness of the lattice in
the case of a solid–liquid interface or by gravity in the case of a fluid–fluid interface.
Nonetheless its remnants are present in the form of pronounced lateral fluctuations of the
interface position, which are known as capillary waves for fluid interfaces and lead to
their broadening in particular under effective microgravity. Fluid interfaces turn rough for
all temperatures above freezing in the limit of vanishing gravity. The rough state of an
interface is characterized by the unlimited increase of the height–height correlation function
of the local interface positionf (R), R ∈ R2, with respect to a reference planez = 0
and the corresponding unlimited broadening of the interface thickness (see, e.g. [1]). These
results follow even within a Gaussian approximation by considering the correlation functions
G(R − R′) = 〈f (R)f (R′)〉 and G(0) = 〈f 2(R)〉 for a statistical weight exp(−βH[f ])
with an effective interface Hamiltonian

H[f ] = σ0

∫
R2

d2R[
√

1 + (∇f (R))2 − 1] = σ0

2

∫
R2

d2(∇f (R))2 + O(f 4) (2.1)

which measures the cost in free energy of increasing the area of the interface against the
action of the surface tensionσ0 compared with a flat configuration; laterally the interface
configurations are assumed to be asymptotically flat. The above picture can be refined by
including curvature contributions which take into account,inter alia, that excursions of the
interface into the vapour phase or into the liquid phase will in general be associated with
different costs in free energy:

H[f ] =
∫

R2
d2R h0(R, [f ]) (2.2)

with

h0(R, [f ]) = σ0(
√

1 + (∇f (R))2 − 1) +
√

1 + (∇f (R))2{cHH + cKK + cH 2H 2 + · · ·}
+ 1

2

(
ρl − ρg

)
mgf 2(R) (2.3)

whereH andK denote the local mean and Gaussian curvature of the interface configuration,
respectively. The mean interface position isz = 0, ρl andρg are the number densities of
the liquid and vapour bulk phases,m is the particle mass, andg is the gravitational constant.
In the context of fluid membranes this phenomenologicalansatz is known as the Helfrich
Hamiltonian [2] with phenomenological constantscH , cK , and cH 2. Equations (2.2) and
(2.3) lead to the following form of the Fourier transform of the structure factor:

G(p) =
∫

R2
d2R e−ip·(R−R′)〈f (R)f (R′)〉 = kBT /σ0

l−2
c + [σ(p)/σ0]p2

(2.4)

where lc = (σ0/(mg 1ρ))
1
2 , 1ρ = ρl − ρg, denotes the capillary length andσ(p) is the

momentum dependent surface tension which fulfills the requirementσ(p → 0) = σ0 and
which in general is temperature dependent.σ(p) contains a Gaussian contribution,

σG(p)/σ0 = 1 + 1

2

cH 2

σ0
p2 + O(p4) (2.5)

and a non-Gaussian contributionσnG(p) due to termsO(f 4) in equation (2.3) whose
influence can be estimated, e.g., by mode coupling approximations [3]. Based on the
local Hamiltonian in (2.2) and (2.3)σ(p)/σ0 − 1 = (σG(p) + σnG(p))/σ0 − 1 increases
with p [3]. The square of the thickness of the interface is proportional to

G(R = 0) = (2π)−2
∫

d2p G(p) = kBT

4π2σ0

∫
d2p

1

l−2
c + [σ(p)/σ0]p2

. (2.6)
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For physical reasons this momentum integration has an upper cutoff provided by the
inverse of the thickness of the intrinsic density profile, which would be present in the
absence of capillary waves: the interface model itself may become questionable for
capillary wavelengths shorter than the thickness of the intrinsic profile. The presence of
this momentum cutoff has the unpleasant feature that the physically observable quantity
G(R = 0) depends on this parameter, whose quantitative value is, however, not determined
by the theory itself. For the interpretation of actual experimental data from fluid interfaces
this latter conceptual problem was sidestepped by observing that, within the local model
((2.2) and (2.3)), the denominator of the integrand in (2.6) increases rapidly enough withp

so that the momentum cutoff can be shifted to infinity without generating a divergence.
The density functional theory of inhomogeneous fluids offers the opportunity to check

the above standard phenomenological line of argument on an atomic scale. Within a simple
version of density functional theory this approach has yielded the following results [4]:

(i) Assuming a steplike density drop across the intrinsic density profile the local
phenomenological Hamiltonian densityh0 (2.3) is replaced by the followingnonlocal
expression:

h0(R, [f ]) = − (1ρ)2

2

∫
R2

d2R′
∫ ∞

0
dz

∫ f (R′)−f (R)

0
dz′ c(|r − r′|). (2.7)

c(r) denotes the bulk direct correlation function of a one-component fluid composed of
spherically symmetric particles which interact according to a pair potentialw(r); r = (R, z).
For large distances one hasc(r → ∞) = w(r) < 0.

(ii) Imposing a gradient expansion onto (2.7) one recovers the structure of the Helfrich
Hamiltonian (2.3) with the following microscopic expressions for the coefficientsσ0 and
cH 2:

σ0 = −π

2
(1ρ)2

∫ ∞

0
dr r3c(r) > 0 (2.8)

cH 2 = π

16
(1ρ)2

∫ ∞

0
dr r5c(r) < 0. (2.9)

(Since the sharp-kink intrinsic density profile happens to be antisymmetric one hascH = 0
andcK remains undetermined, which is consistent with the fact that for asymptotically flat
interfaces

∫
R2 d2R (1 + (∇f (R))2)1/2K = 0.)

(iii) For actual fluids with dispersion forces one hasc(r → ∞) ∼ r−6 socH 2 is infinite.
Thus dispersion forces lead to a breakdown of the gradient expansion for the effective
interface Hamiltonian.

(iv) If one models the long-range attractive part of the pair potential bywlr(r) =
A/(r2 + a2)3, the Gaussian approximation for (2.7) yields

σG(p → 0)/σ0 = 1 −
(

ap

2

)2[
− ln(ap) + ln 2 + 3

4
− cE

]
+ O(p4 ln p). (2.10)

This demonstrates that thenonlocality of the effective interface Hamiltonian leads to a
singularity of the momentum dependent surface tension. This singularity does not affect
the leading behaviourσG(p → 0) = σ0 and thus does not alter the familiar predictions of
the classical theory of capillarity, based on (2.1), on a macroscopic scale. However, the
first correction to this theory is changed qualitatively. Moreover (2.10) shows thatσG(p)

decreasesfor increasing values ofp. If this behaviour would held in general, it would
invalidate the reasoning put forward after (2.6) according to whichG(R = 0) is effectively
independent of the momentum cutoff. This would raise serious conceptual challenges.
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(v) It is intriguing to ask under what conditions the Helfrich Hamiltonian is an acceptable
approximation for the actual nonlocal effective interface Hamiltonian. It turns out that if
the pair potential decays as a power lawr−n with n > 6, e.g. due to retardation effects,
cH 2 will remain finite (albeit very large) but higher-order terms such asH 4 will have an
infinite prefactor. If the pair potential decays exponentially or as a Gaussian, all individual
expansion coefficients remain finite, but the sum of the expansion series diverges. The
necessary requirement for this series to converge is that the pair potentialw(r) has a strictly
finite support.

(vi) The structure factorG(p) (2.4) can be probed experimentally using diffuse scattering
of x-rays or neutrons from fluid interfaces at grazing incidence as function of the lateral
momentum transfer [5]. Whereas theleading asymptoticform (G(p → 0))−1 ∼ l−2

c + p2

has been already confirmed experimentally [5], the test of the subtle singular behaviour of
thenext-to-leading asymptoticbehaviour(G(p → 0))−1 ∼ l−2

c +p2−(pa/2)4| ln(ap)| with
its negative sign has still to be carried out. Such experiments are very important for the
conceptually correct understanding of the structure of fluid interfaces.

(vii) For a proper theoretical interpretation of such experiments, which focus on
correction terms, one first needs a detailed theory for the scattering of x-rays and neutrons
at grazing incidence. This is available [5]. As for the statistical mechanics of the capillary
waves the following improvements beyond the results mentioned above are required: (a)
replacement of the sharp-kink intrinsic profile by a realistic smooth one, (b) consideration
of the distortion of this intrinsic profile due to curvatures, (c) introduction of normal
coordinates, and (d) calculation of the structure factor with a statistical weight which
incorporates both the nonlocal and the non-Gaussian character ofh0(R, [f ]) [6].

3. Wetting phenomena

In practice gravity reduces the roughening of fluid interfaces between two phasesα and
γ typically to a mild broadening of the interface thickness except e.g. for mass density
matching of two coexisting fluid phases of a suitable binary liquid mixture by tuning its
isotopic composition. The broadening of theα–γ interface can, however, be drastically
enhanced if a coexisting third phaseβ becomes thermodynamically stable and can, from a
reservoir, intrude into theα–γ interface and wet it. For this wetting transition to occur the
bulk free energy of theβ phase must become equal (or at least very close) to the bulk free
energies of theα andγ phases, which are already equal to each other because they form
the α–γ interface. (Ifα happens to be an inert spectator phase such as a container wall
only the balance of the bulk free energies of theγ (e.g. vapour) andβ (e.g. liquid) phase
matters.) With the bulk free energies (nearly) balanced the structure of theα–γ interface
is determined by the interplay between the three surface tensionsσαβ , σβγ , and σαγ . In
thermodynamic equilibrium one always has the inequality

σαγ 6 σαβ + σβγ (3.1)

known as Antonov’s rule. Ifσαγ < σαβ + σβγ the thickness of the intrudingβ-like
film between theα and γ phase remains finite. Turning this inequality into an equality,
σαγ = σαβ + σβγ , causes theα–γ interface to split into two independent surface structures
α–β and β–γ which must therefore be macroscopically far apart from each other. This
divergence of the thicknessl of the β-like wetting film reflects the occurrence of a wetting
transition. The wetting transition can be encountered along two distinct thermodynamic
paths. (i) If theβ and γ phases are off coexistence andl diverges by raising, e.g., the
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chemical potential of the species towardsβ–γ coexistence one finds so-calledcomplete
wetting. (ii) If the β and γ phases are in equilibrium it may be thatl is finite below a
so-called wetting transition temperatureTw but infinite for T > Tw. This wetting transition
along β–γ coexistence may be continuous (critical wetting) or discontinuous (first-order
wetting). In the latter case this discontinuity is present even off coexistence, forming a
so-calledprewetting line, which joins theβ–γ coexistence line atTw tangentially. Upon
crossing this prewetting line along a complete wetting path the thicknessl undergoes a first-
order thin–thick transition so that this discontinuity diverges on approachingTw along the
prewetting line and vanishes continuously on approaching the critical point of the prewetting
line, where it disappears.

The ubiquity of wetting phenomena, their technological importance, and the richness of
these interfacial phase transitions have led to a steadily sustained increase of theoretical
and experimental investigations, which are documented in several review articles [7–
11]. Among the systems and phenomena for which wetting has been observed are one-
component fluids at a wall, binary liquid mixtures, liquid metals, quantum fluids, liquid
crystals, polymers, microemulsions, surface melting, grain-boundary melting, wetting in
pores, interface dynamics of volatile and nonvolatile fluids, order–disorder phenomena in
binary alloys, superconductivity, and wetting in disordered systems.

The concept of the effective interface potential�(l) [12] provides an effective and
transparent theoretical framework for the description of the diverse phenomena mentioned
above. �(l) is the free energy cost per area to maintain a wetting film of a prescribed
thicknessl. The actual equilibrium thicknessl0 minimizes�(l) and rendersσαγ = �(l0) =
minl �(l). �(l) is composed of the surface tensionsσαβ and σβγ , which survive if the
wetting film becomes macroscopically thick, and the interaction contributionω(l) which
vanishes forl → ∞ and atβ–γ coexistence and which describes the interference between
the two interfacial structuresα–β andβ–γ if they only are a finite distancel apart:

�(l) = σαβ + σβγ + ω(l). (3.2)

In the case of complete wettingω(l) contains a linearly increasing term which penalizes the
buildup of a phase which is not yet thermodynamically stable in the bulk. The theoretical
task consists of computing�(l) from a microscopic Hamiltonian based on appropriate
techniques of statistical mechanics and monitoring how the minimum atl0 moves to infinity
as a function of the thermodynamic variables such as the pressure and the temperature and as
a functional of the underlying microscopic interaction potentials. Using density functional
theory for inhomogeneous fluids this programme has been carried out [9, 13] for simple
one-component fluids and binary liquid mixtures [14] and can serve for the quantitative
understanding of the recent experimental discoveries of first-order wetting and prewetting
[15, 16] and of critical wetting [17] in such systems.

The effective interface potential offers also a helpful tool to decide to what extent
the presence of capillary waves on the emergingα–β and β–γ interfaces as discussed
in the previous section will affect the wetting transitions and their corresponding thermal
singularities. It turns out that the answer to this question depends sensitively on the range of
the underlying molecular interaction potentials. If they are dominated by dispersion forces
as in basically all fluid systems,ω(l → ∞) decaysalgebraically and thus the exponentially
small entropic contributions in spatial dimensiond = 3 from the capillary wave fluctuations
are irrelevant for largel. Therefore ind = 3 continuous wetting transitions are described
correctly by mean-field theory, which ignores the capillary waves [18]. However, for first-
order wetting the capillary waves are important even for fluid systems with dispersion forces
because in this case the modifications ofω(l) for small l due to capillary waves do matter
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[19]. If there were a system dominated by short-range forces its wetting transitions would
display a very rich fluctuation dominated behaviour [9, 11, 20].

Although a thorough discussion of recent developments in the fields mentioned above
would be rewarding, it would be beyond the scope of the present article. Instead I shall pick
one particular issue and focus on wetting phenomena on laterally structured substrates. This
is an area in which technological applications and interesting problems of basic research
come particularly close to each other. There is a wide range of possible lateral structures
which can be classified as chemical or geometrical as well as combinations thereof. The most
obvious structures of that sort are either disordered chemical defects or geometrical grooves
which lead to a rough substrate. In these cases one strives for an effective description by
averaging appropriately over the lateral disorder. Whereas this issue has already received
both experimental [21] and theoretical [22] attention, the number of studies of wetting on
highly ordered lateral structures has surged upwards only recently. The following examples
highlight this interest.

Janus beads are colloidal particles whose surfaces are treated chemically such that one
hemisphere is hydrophobic and the other hydrophilic [23]. This allows their use as artificial
surfactants for dissolving oil in water. Whereas traditional molecular surfactants are so
densely packed at the oil–water interface that it is impenetrable to ions, these artificial
surfactants leave enough space between them even when densely packed that ion transport
between the oil- and water-rich phases remains possible. It is interesting to monitor the
increase of the local wetting film thickness from a microscopic value to a macroscopic
one upon crossing the chemical heterogeneity at the equator. Replacing such a Janus bead
by a semi-infinite flat substrate (z < 0) which comprises two halvesx > 0 andx < 0,
composed of different species, this crossover has been studied in detail as function of the
temperatureT , and the chemical potentialµ of a simple fluid adsorbate, and as functional
of the interaction potentials involved [24]. If the latter decay for large distances asr−(3+σ),
whereσ = 3 corresponds to Lennard-Jones potentials, then the thicknessl+(1µ) of the
wetting film far to the right of the heterogeneity diverges as(1µ)−1/σ for complete wetting
(1µ → 0 aboveT +

w ) of the corresponding homogeneous substrate;1µ = µ0 − µ denotes
the deviation from gas–liquid coexistenceµ0(T ). For the spatial variation of the local
wetting film thickness along the lateral coordinatex one finds a scaling behaviour

l(x > 0, 1µ → 0) = l+f (x/ξ⊥) (3.3)

with ξ⊥(1µ → 0) ∼ (l+)(σ+1)/2, f (∞) = 1, andf (y → 0) ∼ y2/(σ+1), so that forσ = 3
the film thickness diverges as

√
x; the prefactor is also known analytically. (For a detailed

analysis of the film morphology along various thermodynamic paths see [24].)Inter alia,
it turns out that thelocal interface Hamiltonian (2.1) significantly underestimates the width
of the lateral transition region ofl(x) as compared to thenonlocal version, which in turn
yields rather good agreement with the predictions of a full density functional approach which
avoids an effective interface description. Obviously for both technological and scientific
reasons it is promising to extend the study of the adsorption of fluids to the case of more
complex chemical surface structures, as they can be provided, e.g., by microcontact printing
[25].

Substrates can also be endowed with a rich regular topography. Among the numerous
possibilities the thickness of a wetting film exposed to a periodic array of trapezoidal
grooves has been studied experimentally by x-ray reflectivity [26]. Although a realistic
theoretical description of such a system has not yet emerged, some basic features can be
learned from the study of the simpler case of wetting in a single wedge [27]. If the wedge
is exposed to the vapour phase of a simple fluid whose chemical potential is raised towards
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µ0(T ) the outer parts of the sides of the wedge are covered by a complete wetting film
whose thicknessl diverges∼ (1µ)−1/σ providedT is aboveTw of the corresponding flat
substrate. Towards the centrex = 0 of the symmetric wedge the thickness of the wetting
film increases, reaching a maximum forx = 0. For l → ∞ this maximum value diverges
as lσ and the excess coverage within the wedge as compared with the coverage of two
independent semi-infinite substrates meeting each other diverges asl2σ . Thus the filling of
the wedge occurs rather rapidly and is governed by a single diverging length scale∼ 1/1µ.
The shape of the meniscus, which is determined by theline contributionto the free energy
of the system, attains for|x| → ∞ its asymptotic constant distancel from the sides of
the wedge according to van der Waals tails∼ |x|−3 (σ = 3) whose amplitudes are known
analytically; the local effective interface Hamiltonian (2.1) underestimates these amplitudes
as compared to the nonlocal version (2.7). On the basis of macroscopic arguments it
has been suggested [28] that for1µ → 0 the unlimited filling of a wedge with opening
angle α occurs not only forT > Tw but also for Tα < T < Tw where Tα is given
implicitly by 2(T = Tα) = (π − α)/2 with 2(T ) as the contact angle of the fluid on
the planar substrate. This would imply that the line contribution to the free energy of the
wedge exhibits its own thermodynamic singularities, which are independent and distinct
from those of the surface and bulk contributions of this system. This interesting feature
still awaits explicit confirmation by solution of a microscopic model in statistical physics.
Experimentally it would also be challenging to detect the onset of the transition atTα by
analysing the aforementioned x-ray reflectivity data for the periodic array of grooves, for
which, however, this transition would be smeared out due to their finite depth.

As the above example shows x-ray and neutron reflectivity measurements offer the
opportunity to determine the thickness of wetting films, i. e.one-point correlation functions,
on an atomic scale. Moreover, the diffuse scattering around the specular beam gives access
to the structure factor of such liquid-like films, i.e., to theirtwo-point correlation functions
G(R − R′, z, z′) = 〈ρ(r)ρ(r′)〉 − 〈ρ(r)〉〈ρ(r′)〉 whereρ(r) denotes the fluctuating local
number density of the fluid. These experiments probe the Fourier transform ofG with
respect toR−R′ and the Laplace transform with respect toz andz′ [5]. In the case of the
formation of a liquid-like wetting filmG is determined by (i) the perturbation of the liquid
bulk structure factor due to the presence of a substrate, (ii) the fluctuations of the depinning
of the emerging liquid–vapour interface (see section 2), and (iii) the interference between
these two interfaces. Based on a weighted density functional theory progress has been made
in understanding (i) for a hard-sphere fluid [29]. This allows one to understand how a wall
perturbs the local packing effects in a simple atomic liquid. It also gives access to the local
structural properties of a colloidal suspension close to a wall which can be probed by light
scattering.

4. Critical phenomena

The phases considered in the previous sections were considered to be thermodynamically
far from critical points of gas–liquid coexistence or demixing in the case of binary liquid
mixtures so that the correlation length is of the molecular order. However, upon approaching
such critical pointsTc the correlation lengthξ diverges asξ±(τ = |T − Tc|/Tc → 0) =
ξ±

0 τ−ν with a universal exponentν ' 0.632 and nonuniversal amplitudesξ±
0 , which depend

on whetherTc is approached from below (−) or above (+) and are of the order of 3̊A;
the ratio of the true correlation lengthsξ+

0 /ξ−
0 ' 1.73 is universal. Since a planar wall

perturbs an adjacent fluid at least over a distancez on the scale ofξ one can anticipate
that for T → Tc the wall perturbation proliferates into the bulk without limit. A sizeable
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body of theoretical and experimental research has explored this local modification of bulk
driven critical phenomena [30] and revealed a surprisingly rich and subtle structure. Due to
their universality these phenomena have a rather general character and occur both in solids
(surface magnetism, order–disorder transitions) and fluids. For the latter the so-called critical
adsorption and the Casimir effect play a particularly interesting role.

4.1. Critical adsorption

The container walls of a binary liquid mixture have a preference for one of the two
components leading to a concentration profile which decays towards its bulk value on
the scale ofξ . Close to the demixing transition into an A-rich and a B-rich liquid phase the
concentration difference turns into the order parameter8 for which one finds the following
scaling form:

8±(z, τ ) = aτβP±(z/ξ±); (4.1)

a is the nonuniversal amplitude of the bulk order parameter,8−(z = ∞, τ → 0−) = aτβ

with β ' 0.328, andP±(ζ ) are universal scaling functions which have been computed by
various techniques [31]. For largeζ they decay exponentially whereas for smallζ they
diverge:

P±(ζ → 0) = c±ζ−β/ν β/ν ' 0.519 (4.2)

wherec± are universal surface amplitudes withc+/c− = (ξ+
0 /ξ−

0 )−β/ν . Thus at criticality
the order parameter leads to amesoscopicinterfacial structure,

8(z → ∞, τ = 0) = ac±

(
z

ξ±
0

)−β/ν

(4.3)

whose zeroth moment
∫ ∞

0 dz 8(z, τ = 0) does not exist. As function ofτ → 0 it diverges,∫ ∞

0
dz (8(z, τ ) − 8(∞, τ )) = a ξ±

0 g±
τ−(ν−β) − 1

ν − β
(4.4)

with universal surface amplitudesg± = (ν − β)
∫ ∞

0 dζ (P±(ζ ) − P±(∞)) [32].
The surface behaviour of a large number of binary liquid mixtures has been studied

by ellipsometry and light reflectivity, confirming the above picture [32, 33]. For example,
it is encouraging to find satisfactory quantitative agreement between the theoretical values
of the universal amplitudesc± in (4.3) and the corresponding experimental values inferred
from seven different binary liquid mixtures (see figure 7 in [32]). This strongly supports
the theoretical concept of surface universality and provides confidence in the perturbative
calculation schemes for universal surface quantities. Experiments using x-ray or neutron
reflectivity are expected to yield an even more detailed picture due to their spatial resolution,
much higher than that of light [34]. With such techniques one may be able to study
quantitatively the conceptually important crossover between universal critical adsorption
and nonuniversal complete wetting behaviour along isotherms close toTc as advanced in
figure 8 in [12].

At this stage it is worth pointing out that such critical adsorption phenomena play an
important role for more complex fluids such as polymers exposed to nonplanar geometries.
For example if colloidal particles or fibres are immersed in a dilute polymer solution one
can study interesting adsorption–desorption phase transitions on their surfaces [35]. For an
attractive interaction energy between the polymer monomers and these curved particles one
finds a threshold for its strength above which a single polymer with one end fixed at a finite
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distance from the surfaces will coil around a particle. This means that in the limit of an
infinite polymer afinite portion of it will adhere to the curved surfaces. Whereas on spheres
this phase transition will be observable only on large particles for which the finiteness of the
surface area is not yet effective, there is a true phase transition on fibres or rodlike particles.
(For a detailed analysis of this transition as well as for additional structural properties such
as the profiles of the monomer density or of the end density of the polymer chains see [35].)

4.2. The Casimir effect

In the previous subsection the perturbation of a fluid by a single wall was discussed. If
the fluid is confined by an additional parallel wall at a distancel qualitatively new effects
appear as soon asξ becomes comparable tol. If l is still large compared to the size of the
fluid particles the free energy of this film of areaA decomposes as

F(T , l)

kBTcA
= lfb(T ) + fs,1(T ) + fs,2(T ) + δf (T , l) (4.5)

wherefb, fs,1, fs,2, andδf are the bulk free energy per volume, the surface free energies
per area at the two plates, and the finite-size contribution, respectively, in units ofkBTc.
Close toTc all four terms contain singular contributions such that [36]

Fsing(T , l)

kBTcA
=

{
−a±

b

α(1 − α)(2 − α)
yd

± − a±
s,1 + a±

s,2

αs(1 − αs)(2 − αs)
yd−1

± + 2±(y±)

}
l−(d−1) (4.6)

where y± = l/ξ±, α = 2 − dν and αs = α + ν are standard bulk and surface critical
exponents [30],a±

b and a±
s are universal bulk and surface amplitudes, and2±(y±) is the

universal finite-size scaling function. For largey± the scaling functions2±(y±) decay
exponentially and their value aty = 0 is known as the universal Casimir amplitude
M = 2±(y = 0). Since for largel the actual phase transition in the film occurs at a
temperatureTc(l)/Tc = 1 − κ(l/ξ−

0 )−1/ν with a universal amplitudeκ so that Fsing is
analytic atTc = Tc(l = ∞), one has2±(y± → 0) = ∑

i>0 M±
i y

i/ν
± + (the first two terms

in the above curly brackets (4.6) with opposite sign) with universal numbersM±
0 ≡ M and

M±
i . These universal amplitudes as well as the universal scaling functions2±(y±) depend

on the universality class of the bulk system and on the surface universality classes [30] of
both confining boundaries. These quantities have been determined theoretically by various
techniques [36]. It turns out that for equal boundary conditions on both sides2 is negative
whereas2 can be positive if they are different [36]. In the first case the corresponding
critical Casimir force−∂Fsing/∂l is attractive and acts to thin the film whereas it is repulsive
in the second case.

In fluid systems close toTc this critical Casimir force adds to the dispersion forces
which are present at all temperatures. For largel the finite-size contribution of the free
energy due to the dispersion forces scales asδfreg(T , l) = [W(T )/(kBTc)]/l2 whereW(T )

is the Hamaker constant of the film whereasδfsing(T , l) = 2±(l/ξ±)/ l2 T →Tc−→ M/l2. Thus
at Tc both contributions follow thesamepower law and one obtains an effective Hamaker
constant

Weff (Tc) = W(Tc) + kBTcM (4.7)

containing a universal contributionM. For T 6= Tc δfsing(T , l → ∞) is exponentially small
so that outside the critical region it can be neglected as compared with the dispersion forces.
It is worth noting that atTc, however, the Casimir contribution is ultimately the dominant
contribution, because the dispersion forces will become retarded forl → ∞, leading to
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δfreg(T , l → ∞) ∼ l−3, whereas the power law∼ l−2 for the critical Casimir contribution
remains valid for anyl.

There are two experiments with fluids for which this critical Casimir force is accessible.
The first is based on measuring the force between two parallel plates filled with a fluid
with a force microscope apparatus which enables one to monitor a force anomaly upon
crossingTc. The fluid can be a one-component liquid close to its liquid–vapour critical
point, a binary liquid mixture close to its critical or tricritical demixing transition, or4He or
4He/3He mixtures close to their critical or tricritical transitions to superfluidity. According
to (4.7) the critical effect is particularly pronounced ifTc is sufficiently large andW(Tc)

sufficiently small. (For a more quantitative discussion see the fourth article of [36].)
A more indirect but elegant method is to monitor the thickness of wetting films under

the action of the critical Casimir force. This requires continuous phase transitions in fluids
which leave the depinning liquid–vapour interface (as one of the confining walls of the
critical film) sharp; the other wall is provided by a substrate. This situation can be found
for critical end points in binary liquid mixtures [14], where the line of critical points of
demixing hits the first-order liquid–vapour phase transition, or at the critical end point at
which the line of continuous transitions to superfluidity in4He or 4He/3He mixtures hits the
gas–liquid coexistence curve atTλ. In both cases the substrate and the vapour act as inert
spectator phases confining a fluid which is at the verge of becoming critical. The equilibrium
thickness of the wetting film is determined by the minimum of (3.2) where�(l) is the sum of
the regular contribution due to dispersion forces and the singular contributionFsing(T , l)/A

(4.6). This implies that along a thermodynamic path within the gas phase and parallel to
the gas–liquid coexistence curve the thickness of the wetting film shrinks (expands) upon
passing the critical end point if the critical Casimir force is attractive (repulsive). The depth
of this minimum relative to the noncritical state yields the universal Casimir amplitudeM
whereas its shapel(T ) aroundTc yields the universal scaling functions2±(l/ξ±) (see the
fourth article of [36] for a detailed analysis). It should be pointed out that classical fluids and
the superfluidity transition in4He and4He/3He belong not only to different bulk universality
classes (Ising andXY models, respectively) but also to different surface universality classes:
classical fluids are exposed to surface fields which are conjugate to their order parameter,
whereas in4He and4He/3He there are no surface fields acting on the order parameter of the
superfluidity transition, so in this case the Casimir effect belongs to the case of Dirichlet
boundary conditions at both walls. Such experiments would provide detailed quantitative
tests of the present understanding of wetting phenomena, surface critical behaviour, finite-
size scaling, and of the relation between them.

5. Dipolar fluids

Correlation functions cannot decay faster than the pair potentialw(r) between the particles
involved. Thus one can anticipate that long-range forces will lead to significant structural
perturbations of fluids induced by interfaces.

Dispersion forces withw(r → ∞) ∼ r−6 lead to the so-called van der Waals tails
according to which perturbations of the number densities in fluids at interfaces decay toward
their bulk values∼ z−3. The amplitudes of these van der Waals tails are known analytically
[12, 13].

The vast majority of microscopic model calculations for fluids are based on the
approximation that the underlying interaction potentials between the particles are spherically
symmetric. However, only atomic fluids fulfill this assumption whereas all molecules
deviate from this spherical symmetry and introduce orientational degrees of freedom.
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Consequently interfacial structures of molecular fluids are characterized not only by density
profiles but also byorientational profiles. At elevated temperatures, however, the molecules
are expected to rotate rapidly so that from a distance they appear as spheres which allows one
to describe their properties approximately by effective, temperature dependent spherically
symmetric interaction potentials [37], but this simple picture is no longer valid if external
fields, spatial inhomogeneities, or high densities hinder this rotation.

I shall focus on bulk and interfacial properties ofdipolar fluids for which the anisotropy
is rather pronounced due to the long range of the dipole–dipole interaction potential. This
is motivated,inter alia, by the experience that the range of forces plays a crucial role for
interfacial properties in general and wetting phenomena in particular [9] and the fact that
many fluids used for experiments in this field comprise of molecules with a permanent
electric dipole. Consequently one should be prepared for significant differences in their
interfacial properties compared with those of simple fluids.

The so-called Stockmayer model serves as a starting point for this kind of theoretical
analysis; it assumes spherical particles interacting according to Lennard-Jones interaction
potentials and carrying a permanent point dipole of strengthµ in their centres. The
advantage of this model is that it is also provides an acceptable effective description
of ferrofluids which are emulsions of spherelike magnetized colloidal particles dissolved
in a solvent comprising much smaller molecules. If these colloidal particles do not
carry permanent dipole moments but gain them under the influence of external fields,
one is dealing with electrorheological or ferrorheological fluids which are technologically
important. The line of attack consists in studying first the bulk properties of these fluids and
then turning to their interfacial structures. This task can be accomplished using appropriate
versions of density functional theory [37, 38], the results being compared with simulation
data [39]. The objectives are to calculate phase diagrams, density distributions, and the
orientational order as functions of temperature, chemical potential, and external fields and
to monitor the dependence of these quantities on the strengthµ of the dipole moment. The
Lennard-Jones interaction potential parameters set the scale for the temperature and the
density.

5.1. Bulk properties

Beyond quantitative aspects the Stockmayer model allows one to address also an interesting
conceptual issue. It is known that a sufficiently anisotropic particle shape leads to the
possibility of formingliquids with long-rangeorientational order. These liquid crystalline
phases are promoted primarily by short-range steric interactions. The study of the
Stockmayer model can answer the question of whether in the complete absence of steric
interactions, i.e. for spheres, the anisotropy of the dipolar interaction alone is able to support
long-range orientational order in a fluid state.

The above question can be answered positively [38]. For sufficiently high densities
these dipolar fluids do form a ferromagnetic liquid phase which is separated by a line of
critical points from the isotropic liquid. This line of critical points ends both at the liquid-
vapour and at the liquid–solid transition with critical end points. In the solid phase this line
continues as a line of Curie points. The dipole moment must be sufficiently large to prevent
the formation of the ferromagnetic liquid phase being undercut by freezing. For increasing
values of the dipole moment the critical end point at the liquid–vapour transition turns into
a tricritical point, which detaches from the liquid–vapour coexistence curve and opens a
first-order transition region between the isotropic and ferromagnetic liquid. For large dipole
moments the critical point of the liquid–vapour transition disappears so one is left with a
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single coexistence region between an isotropic and a ferromagnetic fluid (for phase diagrams
see [38]). The occurrence of a ferromagnetic liquid phase in the Stockmayer model as well
as in related models is supported by simulations [40]. Whereas the quantitative agreement
between density functional theory and simulation data is satisfactory for small dipole
moments [37] it deteriorates for larger values. This may reflect the increasing difficulty
of existing density functional theories in properly capturing the pronounced chain formation
in these dipolar fluids for large dipole moments. Nonetheless even in this parameter range
the analytic approach provides an important overview of the rich phase behaviour of these
systems which is also in line with phenomenological approaches [41].

Density functional theory offers moreover the possibility of investigating the nature
of the ferromagnetic liquid phase. If this phase were spatially homogeneous, i.e. with a
parallel alignment of the dipoles, the long range of the dipolar forces would lead to a
dependence of the bulk free energy and thus of the phase diagram on the shape of the
sample. However, dipolar systems have a proper thermodynamic limit, so the bulk free
energy is independent of the shape of the sample [42]. This independence is accomplished
by forming spatially inhomogeneous orientational distributions which vary on the scale of
the sample size anddo depend on the shape of the sample although the phase diagramdoes
not. Thus there is long-range orientational order in the sense that the orientation of a dipole
on one side of the sample fixes the orientational order across the sample on the other side.
However, this orientational order is no longer a simple parallel alignment but much more
complex and critically dependent on the shape of the sample boundaries. This is the most
drastic influence surfaces can have, because their presence determines the structural order
throughout the sample. In these systems the range of influence of surfaces is equal to the
size of the system. (Similar results are known for the phase behaviour of defects in elastic
media [43].) Although first achievements in characterizing the spatial arrangement of the
orientational order in such dipolar fluids have been made [38, 44], a thorough microscopic
analysis is still missing.

5.2. Interfacial properties

In the previous subsection it was reported that the container walls influence the structure
of the orientationally ordered phase on the scale of the sample size. For orientationally
disordered phases the influence of interfaces is less drastic insofar as its range does not
scale with the system size but leads to variations on the scale of the bulk correlation length
with a crossover to van der Waals tails∼ z−3 governed by aneffectivetemperature dependent
isotropic pair potential decaying∼ r−6 [37].

The local structural properties at interfaces for fluids comprising rigid molecules with
a single preferred axis is given by the number densityρ̂(r, ω) of particles at pointr with
orientationω. For laterally isotropic interfaceŝρ = ρ̂(z, ϑ) whereϑ is the orientational
angle of the molecules relative to the normal coordinatez. This number density can
be factorized into the total number densityρ(z) integrated over all orientations and a
dimensionless orientational order parameterᾱ(z, ϑ):

ρ̂(z, ϑ) = ρ(z)
1

2π
ᾱ(z, ϑ)

∫ π

0
dϑ sinϑ ᾱ(z, ϑ) = 1. (5.1)

Accordingly ᾱ(z, ϑ) can be expanded into Legendre polynomials,Pl(cosϑ),

ᾱ(z, ϑ) =
∞∑
l=0

αl(z)Pl(cosϑ) (5.2)
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so that the coefficientαl(z) describes the spatial variation of the orientational order at
the interface whereasρ(z) describes the total density variation. Due to the normalization
one hasα0(z) = 1

2. For disordered dipolar fluidsαl(z) = 0 for l odd. Considering the
interface between disordered phases one hasαl>2(|z| → ∞) = 0. For the interface between
the isotropic liquid and the isotropic gas the higher-order coefficients|αl>4(z)| are much
smaller than|α2(z)| so that for this interface the orientational order is described primarily
by α2(z) [37]. From density functional calculationsα2(z) is negative on the liquid side
of the interface and positive on the vapour side with two extrema [37, 45]. This means
that, although there is no net polarization, the dipoles are preferentially oriented in the
plane on the liquid side and normal to the interface on the vapour side. The amplitude of
this orientational profile depends strongly on the dipole strengthµ and vanishes∼ µ4 for
µ → 0. For T → Tc this interface structure must disappear and scaling requires also a
broadening∼ ξ for τ → 0. For the total number density one has

ρ(z, τ → 0) = ρ+
c Aρτ

βFρ(z/ξ−) (5.3)

whereρc is the density at criticality,Aρ the amplitude of the bulk order parameter, and
Fρ(ζ ) a universal scaling function. There is evidence that the orientational profileα2(z, τ )

also exhibits a scaling behaviour forτ → 0 although it cannot be expressed in terms of the
order parameter of the gas–liquid transition:

α2(z, τ → 0) = Aρτ
β+2νFα(z/ξ−); (5.4)

Fα(ζ ) is another universal scaling function, which vanishes for|ζ | → ∞ and has a zero
at ζ = 0, a minimum at aboutζ ' −1, and a maximum at aboutζ ' +1. It would be
interesting to probe these predictions either by optical methods such as second-harmonic
generation or by x-ray or neutron scattering techniques with molecules labelled suitably by
a sufficient internal charge or isotope contrast so that their orientation becomes indirectly
visible.

Density functional theory also allows one to pinpoint the contribution of this anisotropy
at the interface to the surface tension. One finds (see the last article in [37]) that the
anisotropic contribution is negative but much smaller than the isotropic contribution so the
sum remains positive. This is also displayed in the critical behaviour of both quantities
which must vanish forτ → 0. The anisotropic contribution vanishes∼ τ2(β+ν) whereas the
isotropic part vanishes∼ τ 2ν and thus is also the leading term in the total surface tension.
These predictions still await tests by numerical simulations.
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[4] Dietrich S and Napíorkowski M 1991PhysicaA 177 437
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